Kontinuierliche und kostengünstige Lithium-Gewinnung: Neues Verfahren hat Weltmeere im Fokus
© Adobe Stock / FotoliaSaarbrücken - Lithium zählt derzeit zu den begehrtesten Rohstoffen mit weiter steigender Nachfrage. Zwar gibt es große Lithium-Lagerstätten in chilenischen Salzwüsten oder in australischen Minen. Um den wachsenden Bedarf zu bedienen, müssen neben dem Recycling von Lithium-Ionen-Batterien perspektivisch jedoch neue Quellen erschlossen werden.
Ideal sind dabei regionale Lithium-Quellen, da sich durch verkürzte Transportwege auch der CO2-Fußabdruck von Lithium-Technologien deutlich verbessern ließe.
Die Extraktion des Alkalimetalls aus wässrigen Lösungen ist eine weitere Methode, an der intensiv geforscht wird. So gibt es einige Ansätze, Lithium aus Thermalwasser oder aus Grubenwasser zu gewinnen. Ein weiterer Ansatz ist es, das große Potenzial von Meeren zu nutzen und Lithium aus Meerwasser zu gewinnen.
Forschende des Leibniz-Institut für Neue Materialien (INM) in Saarbrücken haben in Zusammenarbeit mit Wissenschaftlern der Chinesischen Akademie der Wissenschaften in Shanghai dazu ein neues elektrochemisches Verfahren entwickelt, mit dem Lithium-Ionen aus Meerwasser gewonnen werden können. Das von dem deutsch-chinesische Team um Prof. Volker Presser Verfahren in ACS Energy Letters vorgesellte Verfahren kommt nach INM-Angaben einerseits mit einem geringen Energie-Input aus, zum anderen ist eine kontinuierliche Abtrennung von Lithium gewährleistet.
Basis des Verfahrens zur Lithiumgewinnung aus wässrigen Lösungen ist eine Kombination aus einer Redox-Fluss-Batterie, einer Polymermembran für den Austausch von Anionen und zwei lithiumselektiven keramischen Membranen (LISICON). Im Gegensatz zu herkömmlichen Batterien speichern Redox-Fluss-Batterien Energie durch Oxidation und Reduktion eines flüssigen Elektrolyten und nicht durch eine elektrochemische Reaktion in festen Elektroden. Der flüssige Zustand hat den Vorteil, dass der Redox-Elektrolyt gepumpt und so das System kontinuierlich betrieben werden kann.
Die elektrochemische Zelle besteht dabei aus zwei Kammern: eine für die elektrochemische Oxidation und eine zweite für die Reduktion. Zwischen diesen beiden Kammern befindet sich eine Ionentauschmembran. Das Neue am INM-System ist, dass sich zwischen den beiden Kammern für den Redox-Elektrolyten zwei weitere Kanäle für den Zustrom von lithiumhaltigem Wasser und zur Anreicherung von Lithium-Ionen befinden. Damit kommt das Gesamtsystem auf vier Kammern. Die enorme Selektivität von Lithium-Ionen verdankt das System den keramischen LISICON-Membranen, die andere Kationen, wie Natrium- oder Kalium-Ionen, effektiv blockieren.
Im nächsten Schritt soll das elektrochemische System nun weiter verbessert werden. Derzeit ist die keramische LISICON-Membran im Fokus der Optimierungsstrategie der Forschenden. „Dünnere und auf anderen Materialien basierende Lithium-Ionen-Membranen werden den Prozess deutlich schneller ablaufen lassen und ergeben geringere Kosten bei gleichzeitig verbesserter mechanischer Stabilität“, so Volker Presser. Eine solche Technologie könne künftig einen wichtigen Beitrag zur Lithium-Kreislaufwirtschaft leisten.
© IWR, 2024
Job: Bau- und Liegenschaftsbetrieb NRW sucht Spezialistin / Spezialisten (w/m/d) für Digitales Energiedatenmanagement (EDM) Schnelles Laden an Autobahnen: Autobahn GmbH schreibt Ladesäulen für E-LKW und E-Busse aus
Gemeinde Zeschdorf profitiert finanziell: Naturstrom präsentiert 70 MW-Solarpark der Öffentlichkeit
Capcora berät: Belgische Aukera Energy kauft Solaranlage mit Batteriespeicher in Deutschland
Vesterhav Nord und Vesterhav Syd: Vattenfall weiht zwei weitere dänische Offshore Windparks ein
Vertikale PV-Anlagen: Next2Sun gewinnt GaLaBau Innovationsmedaille für neuen Solarzaun
Das könnte Sie auch noch interessieren
Energiejobs für Ingenieure
Gewerbestrom - Strom-Anbieter wechseln
Tagesaktuelle Stromerzeugung in Europa just in time
16.11.2022